Refactor Haskell code with enhanced type safety and error handling

- Add OutputFormat ADT for explicit format handling vs file extension checking
- Replace crash-prone runIOorExplode with proper Either error handling
- Extract processMermaidBlock into focused functions for better maintainability
- Convert String constants to Text for type consistency
- Add DiagramConfig type for better configuration management
- Enhance haskell-refactoring-expert agent to handle module organization

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
Willem van den Ende 2025-07-29 22:16:34 +02:00
parent f7a6482447
commit e6048e34d1
2 changed files with 177 additions and 68 deletions

View File

@ -0,0 +1,52 @@
---
name: haskell-refactoring-expert
description: Use this agent when you need to refactor Haskell code to improve clarity, resolve package dependencies, enhance naming conventions, optimize library usage (especially Text vs String vs ByteString), create cleaner abstractions without over-engineering, and organize code into appropriate module structure by splitting large files when beneficial. Examples: <example>Context: User has written some Haskell code that mixes String and Text types inconsistently. user: 'I just wrote this function that processes file paths but I'm mixing String and Text types. Can you help clean this up?' assistant: 'I'll use the haskell-refactoring-expert agent to analyze your code and provide refactoring suggestions for consistent type usage.' <commentary>The user needs help with type consistency in Haskell, which is exactly what the haskell-refactoring-expert specializes in.</commentary></example> <example>Context: User has a Haskell module with unclear function names and tangled dependencies. user: 'This module has grown organically and now the dependencies are a mess and the function names don't clearly express their intent.' assistant: 'Let me use the haskell-refactoring-expert agent to analyze your module structure and suggest improvements for naming and dependency organization.' <commentary>This is a perfect case for the refactoring expert to address naming and dependency issues.</commentary></example>
tools: Task, Bash, Glob, Grep, LS, ExitPlanMode, Read, Edit, MultiEdit, Write, NotebookRead, NotebookEdit, WebFetch, TodoWrite, WebSearch, mcp__sequential-thinking__sequentialthinking
color: cyan
---
You are an expert Haskell developer with impeccable taste in refactoring and a deep understanding of idiomatic Haskell code. Your expertise lies in transforming messy, unclear, or inefficient Haskell code into clean, well-structured, and maintainable solutions.
Your core responsibilities:
**Dependency Management**: Analyze and resolve package dependency issues by identifying redundant imports, suggesting more appropriate libraries, and organizing module dependencies for clarity and minimal coupling.
**Module Organization**: Analyze file size and functional responsibilities to determine when to split large files into separate modules. Create appropriate module hierarchies following Haskell conventions (ProjectName.ModuleName). Keep Main.hs focused on CLI and orchestration only.
**File Splitting Criteria**:
- Split files exceeding 150-200 lines into logical modules
- Create separate modules when there are 3+ distinct responsibilities
- Extract common patterns: Types, Utils, Parser, Renderer modules
- Always update cabal file's other-modules section for new modules
**Modularity**: Analyze responsibilities of data structures and functions that operate on them. Separate functions that have different responsibilities into separate modules.
**Patterns**: Refactor towards modular patterns that represent current good practice in Haskell.
**Type System Optimization**: Make precise decisions about when to use String, Text, ByteString, or other data types based on performance characteristics and API requirements. Always justify your type choices with clear reasoning.
**Naming Excellence**: Transform unclear variable, function, and module names into self-documenting identifiers that clearly express intent and domain concepts. Follow Haskell naming conventions while prioritizing clarity.
**Clean Abstractions**: Create appropriate abstractions that eliminate code duplication and improve maintainability without falling into over-engineering traps. Know when to abstract and when to keep things simple.
**Library Usage Mastery**: Recommend the most appropriate libraries and functions for specific tasks, considering factors like performance, maintainability, and ecosystem maturity.
Your refactoring approach:
1. **Analyze First**: Examine the existing code structure, dependencies, and patterns before suggesting changes
2. **Assess Structure**: Evaluate if large files (>150 lines) should be split into logical modules
3. **Prioritize Impact**: Focus on changes that provide the most significant improvement in clarity and maintainability
4. **Create When Beneficial**: Don't hesitate to create new modules/files when it improves organization
5. **Preserve Semantics**: Ensure all refactoring maintains the original behavior unless explicitly asked to change functionality
6. **Explain Rationale**: Always explain why specific refactoring choices improve the code
7. **Consider Context**: Take into account the broader codebase context and project requirements when making suggestions
When reviewing code:
- Assess if file size and responsibilities warrant splitting into modules
- Identify inconsistent type usage (especially String/Text/ByteString mixing)
- Spot opportunities for better naming that expresses domain concepts
- Detect unnecessary dependencies or missing beneficial ones
- Recognize patterns that could benefit from cleaner abstractions
- Flag over-engineered solutions that could be simplified
- Check if module structure follows Haskell conventions and project needs
Always provide concrete, actionable refactoring suggestions with clear before/after examples. Your goal is to elevate Haskell code to its most elegant and maintainable form while respecting the principle that perfect is the enemy of good.

View File

@ -4,12 +4,9 @@
module Main (main) where module Main (main) where
import Text.Pandoc import Text.Pandoc
import Text.Pandoc.Class (runIOorExplode)
import Text.Pandoc.PDF (makePDF) import Text.Pandoc.PDF (makePDF)
import Text.Pandoc.Walk (walkM)
import Text.Pandoc.Extensions (getDefaultExtensions)
import System.Environment (getArgs) import System.Environment (getArgs)
import System.FilePath (replaceExtension, takeDirectory, takeFileName, takeExtension, (</>)) import System.FilePath (replaceExtension, takeDirectory, takeFileName, (</>))
import System.Process (callProcess) import System.Process (callProcess)
import System.Directory (removeFile) import System.Directory (removeFile)
import Data.Text (Text) import Data.Text (Text)
@ -30,63 +27,106 @@ data DocsterError
instance Exception DocsterError instance Exception DocsterError
-- | Output format for explicit handling instead of file extension checking
data OutputFormat = PDF | HTML deriving (Show, Eq)
-- | Type-safe wrappers for better domain modeling -- | Type-safe wrappers for better domain modeling
newtype SourceDir = SourceDir FilePath deriving (Show, Eq) newtype SourceDir = SourceDir FilePath deriving (Show, Eq)
newtype OutputPath = OutputPath FilePath deriving (Show, Eq) newtype OutputPath = OutputPath FilePath deriving (Show, Eq)
newtype DiagramId = DiagramId Text deriving (Show, Eq) newtype DiagramId = DiagramId Text deriving (Show, Eq)
-- | Constants for the application -- | Configuration for diagram generation
mermaidCommand :: String data DiagramConfig = DiagramConfig
{ dcSourceDir :: SourceDir
, dcOutputFormat :: OutputFormat
} deriving (Show)
-- | Constants for the application (using Text for consistency)
mermaidCommand :: Text
mermaidCommand = "mmdc" mermaidCommand = "mmdc"
diagramPrefix :: String diagramPrefix :: Text
diagramPrefix = "diagram-" diagramPrefix = "diagram-"
successEmoji :: String successEmoji :: Text
successEmoji = "" successEmoji = ""
-- | Generate a diagram ID from content hash or explicit ID -- | Generate a diagram ID from content hash or explicit ID
generateDiagramId :: Text -> Text -> DiagramId generateDiagramId :: Text -> Text -> DiagramId
generateDiagramId explicitId contents generateDiagramId explicitId contents
| T.null explicitId = DiagramId $ T.pack $ diagramPrefix <> take 6 (show (abs (hash (T.unpack contents)))) | T.null explicitId = DiagramId $ diagramPrefix <> T.take 6 (T.pack . show . abs . hash $ T.unpack contents)
| otherwise = DiagramId explicitId | otherwise = DiagramId explicitId
-- | Transform Mermaid code blocks into image embeds with resource cleanup -- | Transform Mermaid code blocks into image embeds with resource cleanup
processMermaidBlock :: SourceDir -> OutputPath -> Block -> IO Block processMermaidBlock :: DiagramConfig -> Block -> IO (Either DocsterError Block)
processMermaidBlock (SourceDir sourceDir) (OutputPath outputPath) (CodeBlock (id', classes, _) contents) processMermaidBlock config (CodeBlock (id', classes, _) contents)
| "mermaid" `elem` classes = do | "mermaid" `elem` classes = do
let DiagramId diagId = generateDiagramId id' contents let diagId = generateDiagramId id' contents
diagIdStr = T.unpack diagId result <- renderMermaidDiagram config diagId contents
mmdFile = sourceDir </> diagIdStr <> ".mmd" case result of
-- Use SVG for HTML (scalable), high-res PNG for PDF (text compatibility) Left err -> return $ Left err
(outputFile, imagePath) = if isHTMLOutput outputPath Right imagePath -> return $ Right $ createImageBlock imagePath
then let svgFile = sourceDir </> diagIdStr <> ".svg" processMermaidBlock _ block = return $ Right block
in (svgFile, takeFileName svgFile)
else let pngFile = sourceDir </> diagIdStr <> ".png"
in (pngFile, pngFile)
-- Use bracket to ensure cleanup of temporary mermaid file -- | Generate file paths for diagram based on format
bracket generateDiagramPaths :: DiagramConfig -> DiagramId -> (FilePath, Text)
(TIO.writeFile mmdFile contents >> return mmdFile) generateDiagramPaths (DiagramConfig (SourceDir sourceDir) format) (DiagramId diagId) =
(\file -> removeFile file `catch` \(_ :: SomeException) -> return ()) let diagIdStr = T.unpack diagId
(\_ -> do in case format of
-- Generate with appropriate format and quality for output type HTML -> let svgFile = sourceDir </> diagIdStr <> ".svg"
if isHTMLOutput outputPath in (svgFile, T.pack $ takeFileName svgFile)
then void $ callProcess mermaidCommand ["-i", mmdFile, "-o", outputFile] PDF -> let pngFile = sourceDir </> diagIdStr <> ".png"
else void $ callProcess mermaidCommand ["-i", mmdFile, "-o", outputFile, "--scale", "3"] in (pngFile, T.pack pngFile)
putStrLn $ successEmoji <> " Generated " <> outputFile
-- Let images scale naturally - LaTeX will handle oversized images with adjustbox
let imageAttrs = nullAttr -- Constrain size and maintain aspect ratio for PDF
return $ Para [Image imageAttrs [] (T.pack imagePath, "Mermaid diagram")])
processMermaidBlock _ _ block = return block
-- | Check if output is HTML format based on file extension -- | Render Mermaid diagram to appropriate format
isHTMLOutput :: FilePath -> Bool renderMermaidDiagram :: DiagramConfig -> DiagramId -> Text -> IO (Either DocsterError Text)
isHTMLOutput path = takeExtension path == ".html" renderMermaidDiagram config@(DiagramConfig (SourceDir sourceDir) format) diagId contents = do
let diagIdStr = T.unpack $ (\(DiagramId d) -> d) diagId
mmdFile = sourceDir </> diagIdStr <> ".mmd"
(outputFile, imagePath) = generateDiagramPaths config diagId
-- Use bracket to ensure cleanup of temporary mermaid file
result <- bracket
(TIO.writeFile mmdFile contents >> return mmdFile)
(\file -> removeFile file `catch` \(_ :: SomeException) -> return ())
(\_ -> do
processResult <- callMermaidProcess format mmdFile outputFile
case processResult of
Left err -> return $ Left err
Right _ -> do
putStrLn $ T.unpack $ successEmoji <> " Generated " <> T.pack outputFile
return $ Right imagePath)
return result
-- | Walk the Pandoc AST and process blocks using walkM -- | Call mermaid process with appropriate arguments
transformDocument :: SourceDir -> OutputPath -> Pandoc -> IO Pandoc callMermaidProcess :: OutputFormat -> FilePath -> FilePath -> IO (Either DocsterError ())
transformDocument sourceDir outputPath = walkM (processMermaidBlock sourceDir outputPath) callMermaidProcess format mmdFile outputFile = do
let args = case format of
HTML -> ["-i", mmdFile, "-o", outputFile]
PDF -> ["-i", mmdFile, "-o", outputFile, "--scale", "3"]
result <- catch
(callProcess (T.unpack mermaidCommand) args >> return (Right ()))
(\(e :: SomeException) -> return $ Left $ ProcessError $ "Mermaid process failed: " <> T.pack (show e))
return result
-- | Create Pandoc image block
createImageBlock :: Text -> Block
createImageBlock imagePath = Para [Image nullAttr [] (imagePath, "Mermaid diagram")]
-- | Walk the Pandoc AST and process blocks using walkM with proper error handling
transformDocument :: DiagramConfig -> Pandoc -> IO (Either DocsterError Pandoc)
transformDocument config doc = do
result <- walkMEither (processMermaidBlock config) doc
return result
-- | Walk with error handling - transforms Either into IO Either
walkMEither :: Monad m => (Block -> m (Either e Block)) -> Pandoc -> m (Either e Pandoc)
walkMEither f (Pandoc meta blocks) = do
results <- mapM f blocks
case sequence results of
Left err -> return $ Left err
Right newBlocks -> return $ Right $ Pandoc meta newBlocks
-- | LaTeX template with comprehensive package support -- | LaTeX template with comprehensive package support
latexTemplate :: Text -> Text latexTemplate :: Text -> Text
@ -175,24 +215,32 @@ compileToPDF path = do
-- | Safe PDF compilation with proper error handling -- | Safe PDF compilation with proper error handling
compileToPDFSafe :: SourceDir -> OutputPath -> OutputPath -> IO (Either DocsterError ()) compileToPDFSafe :: SourceDir -> OutputPath -> OutputPath -> IO (Either DocsterError ())
compileToPDFSafe sourceDir (OutputPath inputPath) outputPath@(OutputPath outputPathStr) = do compileToPDFSafe sourceDir (OutputPath inputPath) (OutputPath outputPathStr) = do
content <- TIO.readFile inputPath content <- TIO.readFile inputPath
let readerOptions = def { readerExtensions = getDefaultExtensions "markdown" } let readerOptions = def { readerExtensions = getDefaultExtensions "markdown" }
config = DiagramConfig sourceDir PDF
pandoc <- runIOorExplode $ readMarkdown readerOptions content pandocResult <- runIO $ readMarkdown readerOptions content
transformed <- transformDocument sourceDir outputPath pandoc case pandocResult of
Left err -> return $ Left $ FileError $ "Failed to parse markdown: " <> T.pack (show err)
-- Generate LaTeX with proper template Right pandoc -> do
latexOutput <- runIOorExplode $ writeLaTeX def transformed transformResult <- transformDocument config pandoc
let completeLatex = latexTemplate latexOutput case transformResult of
Left err -> return $ Left err
result <- runIOorExplode $ makePDF "xelatex" [] (\_ _ -> return completeLatex) def transformed Right transformed -> do
case result of latexResult <- runIO $ writeLaTeX def transformed
Left err -> return $ Left $ PDFGenerationError $ T.pack $ show err case latexResult of
Right bs -> do Left err -> return $ Left $ PDFGenerationError $ "LaTeX generation failed: " <> T.pack (show err)
BL.writeFile outputPathStr bs Right latexOutput -> do
putStrLn $ successEmoji <> " PDF written to " <> outputPathStr let completeLatex = latexTemplate latexOutput
return $ Right () pdfResult <- runIO $ makePDF "xelatex" [] (\_ _ -> return completeLatex) def transformed
case pdfResult of
Left err -> return $ Left $ PDFGenerationError $ T.pack $ show err
Right (Left err) -> return $ Left $ PDFGenerationError $ T.pack $ show err
Right (Right bs) -> do
BL.writeFile outputPathStr bs
putStrLn $ T.unpack $ successEmoji <> " PDF written to " <> T.pack outputPathStr
return $ Right ()
-- | Compile markdown to HTML -- | Compile markdown to HTML
compileToHTML :: FilePath -> IO () compileToHTML :: FilePath -> IO ()
@ -207,22 +255,31 @@ compileToHTML path = do
-- | Safe HTML compilation with proper error handling -- | Safe HTML compilation with proper error handling
compileToHTMLSafe :: SourceDir -> OutputPath -> OutputPath -> IO (Either DocsterError ()) compileToHTMLSafe :: SourceDir -> OutputPath -> OutputPath -> IO (Either DocsterError ())
compileToHTMLSafe sourceDir (OutputPath inputPath) outputPath@(OutputPath outputPathStr) = do compileToHTMLSafe sourceDir (OutputPath inputPath) (OutputPath outputPathStr) = do
content <- TIO.readFile inputPath content <- TIO.readFile inputPath
let readerOptions = def { readerExtensions = getDefaultExtensions "markdown" } let readerOptions = def { readerExtensions = getDefaultExtensions "markdown" }
config = DiagramConfig sourceDir HTML
pandoc <- runIOorExplode $ readMarkdown readerOptions content pandocResult <- runIO $ readMarkdown readerOptions content
transformed <- transformDocument sourceDir outputPath pandoc case pandocResult of
Left err -> return $ Left $ FileError $ "Failed to parse markdown: " <> T.pack (show err)
html <- runIOorExplode $ writeHtml5String def transformed Right pandoc -> do
TIO.writeFile outputPathStr html transformResult <- transformDocument config pandoc
putStrLn $ successEmoji <> " HTML written to " <> outputPathStr case transformResult of
Left err -> return $ Left err
-- Open the generated HTML file in browser Right transformed -> do
putStrLn $ "🌐 Opening " <> outputPathStr <> " in browser for error checking..." htmlResult <- runIO $ writeHtml5String def transformed
void $ callProcess "open" [outputPathStr] case htmlResult of
Left err -> return $ Left $ FileError $ "HTML generation failed: " <> T.pack (show err)
return $ Right () Right html -> do
TIO.writeFile outputPathStr html
putStrLn $ T.unpack $ successEmoji <> " HTML written to " <> T.pack outputPathStr
-- Open the generated HTML file in browser
putStrLn $ "🌐 Opening " <> outputPathStr <> " in browser for error checking..."
void $ callProcess "open" [outputPathStr]
return $ Right ()
-- | Main entry point -- | Main entry point
main :: IO () main :: IO ()