import json # Import the json module from qwen_agent.agents import Assistant # Define LLM llm_cfg = { 'model': 'qwen3:0.6B', # Use the endpoint provided by Alibaba Model Studio: # 'model_type': 'qwen_dashscope', # 'api_key': os.getenv('DASHSCOPE_API_KEY'), # Use a custom endpoint compatible with OpenAI API: 'model_server': 'http://localhost:11434/v1', # api_base 'api_key': 'EMPTY', # Other parameters: # 'generate_cfg': { # # Add: When the response content is `this is the thoughtthis is the answer; # # Do not add: When the response has been separated by reasoning_content and content. # 'thought_in_content': True, # }, } # Define Tools tools = [ {'mcpServers': { # You can specify the MCP configuration file 'time': { 'command': 'uvx', 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai'] }, "fetch": { "command": "uvx", "args": ["mcp-server-fetch"] } } }, 'code_interpreter', # Built-in tools ] # Define Agent bot = Assistant(llm=llm_cfg, function_list=tools) # Streaming generation messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Sumarize the latest developments of Qwen'}] # Initialize responses variable before the loop in case the loop doesn't run final_responses = None for responses in bot.run(messages=messages): # The loop assigns the latest response to final_responses final_responses = responses # Pretty-print the final response object if final_responses: print(json.dumps(final_responses, indent=2)) # Use indent=2 (or 4) for pretty printing else: print("No response received from the agent.")